Наука и технологии |
Мы инженеры28.11.08 Владимир Бетелин, директор НИИ системных исследований, академик РАН Успех русской инженерной школы всегда основывался на единстве триады – образование–наука-промышленность. Сегодня Россия вновь собралась строить инновационную экономику, поэтому стоит вспомнить опыт предшественников
В девятнадцатом веке критерием успеха деятельности любого профессора Института корпуса инженеров путей сообщения были проложенные им дороги, построенные мосты, шлюзы, каналы, причалы. Свидетельством авторитета русского инженера того времени, несущего персональную ответственность за реализацию сложного технического проекта, можно считать любимую фразу императора Николая I «Мы инженеры».
Чему мы научили американцев
Основы русской инженерной школы были заложены в стенах Института корпуса инженеров путей сообщения, созданного указом императора Александра I в 1809 году. В 30–40−х годах XIX века этот институт уже сильнейший научно-технический вуз России, а уровень образования его выпускников соответствует высшему европейскому классу того времени. Лекции по математике здесь читают академики М. В. Остроградский и В. Я. Буняковский. В 1835 году М. С. Волков стал читать первый в России курс «Построение железных дорог», а уровень требований к проработке даже курсовых проектов обеспечивал возможность немедленно начинать строительство. Первое свидетельство тому — завершение русскими инженерами-путейцами (всего через семь лет после первой железной дороги Стефенсона в Англии) в 1837 году железной дороги Петербург—Царское Село. Еще через четыре года, в 1841−м, профессор П. П. Мельников завершает разработку еще более грандиозного по тем временам проекта строительства железной дороги Москва — Петербург, а в 1843 году по указу императора начинается строительство этой дороги длиной 650 верст. Одно из наиболее важных свидетельств готовности российских инженеров к этой грандиозной стройке — издание в 1842 году «Курса строительного искусства» в трех частях М. С. Волкова, Н. И. Липина и Н. Ф. Ястржембского. Специальным указом Николай I поручил возглавить строительство профессорам Мельникову и Крафту и подчинил их непосредственно своей особе. Из 184 мостов, построенных на Николаевской дороге, восемь относятся к категории больших с двумя-девятью пролетами. Мельников поручил проектирование этих мостов выпускнику Института корпуса путей сообщения инженеру-поручику Д. И. Журавскому, что, очевидно, свидетельствует о чрезвычайно высоком уровне подготовки выпускников, которым доверяли такие сложные проекты. При строительстве самого большого Веребьинского моста «великий поручик» впервые применил разработанную им теорию раскосных ферм и фактически стал основоположником теории мостостроения и науки о сопротивлении материалов. В этой связи следует отметить, что в США, по данным статистики, с 1878−го по 1887 год, то есть более чем через тридцать лет после работ Журавского, произошло свыше 250 аварий мостов — американские инженеры строили мосты, по-прежнему полагаясь на интуицию, а не на расчеты.
Накануне и после 1917 года страну покинули тысячи высокообразованных людей, в том числе около трех тысяч дипломированных инженеров, внесших впоследствии значительный вклад в развитие высокотехнологичных отраслей как в Европе, так и в США. К их числу принадлежал и профессор Института путей сообщения С. П. Тимошенко, который в 1911 году был уволен из Киевского университета по политическим мотивам, эмигрировал в Европу, а в 1922 году переехал в США. Уже в первые дни пребывания в Нью-Йорке он отметил низкий уровень технического образования, отсутствие интереса к инженерной науке, безграмотность проектов металлических конструкций городских сооружений. За достаточно короткое время Тимошенко стал одним из наиболее авторитетных специалистов Америки, объясняя это тем, что «основная подготовка в математике и основных технических предметах давала нам огромное преимущество перед американцами при решении новых нешаблонных задач». Созданные им в 30−х годах школы прикладной механики в Анн-Арборе, Стенфордском и Калифорнийском университетах приобрели широкую известность и воспитали целую плеяду учеников. По словам члена Французской академии наук Поля Жермена, «русский Тимошенко научил американцев прочностным расчетам». Тем не менее, вспоминая годы Второй мировой войны, Тимошенко снова констатирует, что «война ясно показала всю отсталость Америки в деле организации инженерного образования». И только энергичные действия правительства США, выделившего средства для расширения исследовательской деятельности и подготовки докторов в области технических наук, в последующие годы позволили исправить эту ситуацию. Уже на склоне лет ученый писал: «Обдумывая причину наших достижений в Америке, я прихожу к заключению, что немалую долю в этом деле сыграло образование, которое нам дали русские высшие инженерные школы».
Знания по плану
Основные достижения русской инженерной школы, в том числе ключевая идея единства промышленности, науки и образования, были положены в основу промышленного развития России и после революции. Русская инженерная школа и после 1917 года сохранила научно-техническое и организационное единоначалие и опиралась на персональную ответственность генеральных конструкторов, чьим объективным критерием успеха деятельности были созданные ими образцы гражданской и военной техники, а также заводы по ее производству. По наследству перешли и высокий престиж естественнонаучного образования, и умение привлекать достижения фундаментальной науки к решению сложных технических проблем. Эта преемственность, собственно, и позволила СССР в 40–80−х годах ХХ века совершить технологический прорыв, в результате которого были созданы атомная и ракетно-космическая отрасли, и далее на этой основе реализовать вариант плановой «экономики знаний», цель которой заключалась прежде всего в достижении мирового военного лидерства. В тот период триада «промышленность — наука — образование» действительно представляла собой единый взаимоувязанный национальный комплекс. Численными критериями успешного функционирования этой триады служили тактико-технические характеристики и технологические и экономические показатели (дальность, масса, точность, срок службы, технологичность и трудоемкость процесса серийного производства и т. д.) создаваемых систем вооружения, необходимых для достижения военного превосходства или паритета.
Плановая «экономика знаний» основывалась на достижениях фундаментальной науки, что предопределило успешное выполнение в СССР целого ряда стратегически важных государственных проектов. К их числу относится создание промышленности разделения изотопов — одного из наиболее сложных и важных направлений атомного проекта. Научным руководителем проекта, несущим персональную ответственность за его реализацию, а фактически и генеральным конструктором первого диффузионного завода был академик И. К. Кикоин — один из лучших представителей русской инженерной школы ХХ века, в котором уникально сочетались ученый-исследователь, инженер, конструктор и руководитель большого коллектива. В середине 50−х годов Кикоин, руководя проблемой разделения изотопов, возглавил грандиозный инновационный проект, не имевший аналогов в мировой практике, — создание завода разделения изотопов урана центрифужным методом. Практическая реализация этого метода основывалась на ключевых идеях, одна из которых, принадлежащая Кикоину, обеспечила решение важнейшей проблемы передачи легкой и тяжелой фракций от центрифуги к центрифуге. В 1957 году начинает работать небольшой опытный завод газовых центрифуг, далее принимается решение о строительстве первого промышленного центрифужного завода. Именно эти заводы, созданные в СССР полвека назад при решающем вкладе фундаментальной науки, заложили основы современной российской промышленности разделения изотопов, которая демонстрирует высокую эффективность и в условиях рыночной экономики, обеспечивая долю страны на мировом рынке низкообогащенного урана в размере 40%, а на рынке топлива для АЭС — 17%.
На младших курсах всех технических вузов СССР изучались фундаментальные основы высшей математики и общей физики, на которые опирались базовые и специализированные курсы инженерных дисциплин. Благодаря этому в СССР технические вузы, независимо от специализации, фактически готовили специалистов широкого профиля, способных быстро адаптироваться к работе в любой технической области. Не менее важно и то, что определенная избыточность системы массовой подготовки инженерных кадров обеспечивала возможность формирования технически подготовленного и грамотного управляющего персонала предприятий и государственных структур. Высокая эффективность советской системы образования при подготовке инженерных кадров отмечалась не только Тимошенко, но и многими другими американскими экспертами, детально изучавшими эту систему после запуска первого искусственного спутника Земли.
Чужая «экономика знаний»
После 1991 года приоритет в экономической сфере России был отдан не формированию единой государственной научно-технической и промышленной политики, а использованию механизмов мирового рынка и национальных институтов развития для встраивания отдельных предприятий и учреждений национальной промышленности, науки и образования в мировую систему разделения труда, сформированную лидерами рыночной «экономики знаний». В результате к настоящему времени наука, образование и промышленность России представляют собой не единый взаимоувязанный национальный комплекс, а являются множеством независимых друг от друга промышленных предприятий, научно-исследовательских институтов, учебных заведений, индивидуально встраивающихся в промышленную, научную и образовательную компоненты глобальной мировой инновационной системы.
Аналогичная ситуация и в национальной отечественной системе образования, где критерием успеха тоже остается конкурентоспособность на мировом образовательном рынке, то есть гипотетическое встраивание системы образования России в глобальную мировую инновационную систему, а не удовлетворение потребностей национальной промышленности и науки. За последние годы радикально уменьшено число учебных часов школьных программ, отводимых на математику и физику, Россия декретивно включена в Болонский процесс, невзирая на очевидные минусы и издержки, вместо традиционной формы школьного экзамена введен ЕГЭ и т. д. Ключевым элементом предлагаемой трансформации национальной системы образования России является переход от массовой подготовки специалистов широкого профиля, имеющих фундаментальную подготовку, способных самостоятельно и быстро специализироваться в любой требуемой области, к массовой подготовке специалистов узкого профиля, владеющих ограниченной суммой знаний и навыков. Переход к другой узкой области для такого специалиста, очевидно, связан с прохождением в образовательном учреждении новой «образовательной траектории». Чем «уже» траектория обучения, чем больше в ней «точек ветвления», тем чаще обращения к рыночной системе образования и, соответственно, тем больше ее выручка. Достаточно очевидно, что эта «траекторная» образовательная система существенно более затратна, принципиально менее эффективна для национальных промышленности и науки, чем традиционная советская образовательная система.
Источник: «Эксперт»
|